WORK, ENERGY AND POWER
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Fig. 6.3 (a} The shaded rectangle represents the
work done by the varying force Flx), over
the small displacement Ax, AW = Fla Ax.
(b} adding the areas of all the rectangles we
find that for Ax — 0, the area under the cuorve
is exactly egual to the work done by Flx.

P Example 6.5 A woman pushes a trunk on
a railway platform which has a rough
surface. She applies a force of 100 N overa
distance of 10 m. Thereafier, she gets
progressively tired and her applied force
reduces linearly with distance to 50 N. The
total distance through which the trunk has
been moved is 20 m. Plot the foree applied
by the woman and the frictional force, which
is 50 N versus displacement. Calculate the
work done by the two forces over 20 m.
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Fig. 6.4 Plot of the force F applied by the woman and
the opposing frictional force f versus
displacement.

The plot of the applied force is shown in Fig.
6.4. At x =20m, F =50 N (= 0). We are given
that the frictional force fis |f|= 50 N. It opposes
motion and acts in a direction opposite to F. It
is therefore, shown on the negative side of the
force axis.

The work done by the woman is

W,— area of the rectangle ABCD + area of
the trapezium CEID

: 1 ,

Wy =100x m+5{1m+ 501 %10

= 1000 + 750
=1750J
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The work done by the frictional force is
W,— area of the rectangle AGHI

W, =(-50) = 20
=—1000J
The area on the negative side of the force axis
has a negative sign. 4
6.6 THE WORK-ENERGY THEOREM FOR A
VARIABLE FORCE

We are now familiar with the concepts of work
and kinetic energy to prove the work-energy
theorem for a wvariable force. We confine
ourselves to one dimension. The time rate of
change of kinetic energy is

dK _d |1 2)
Friaen o

=m—7u
dt

=F v (from Newton's Second Law)

o
dt
Thus
dK =Fdx
Integrating from the initial position (x ) to final
position ( x,], we have

Ky =y
| dxc- | Fax
Ky X

where, K and K_rareﬂ]ellﬂﬂa] and final kinetic
energies corresponding to x, and x .

x5
o By=s f ix

(6.8a)
A
From Eq. (6.7), it follows that
KE-K=W (6.8b)

Thus, the WE theorem is proved for a variable
force.

While the WE theorem is useful in a variety of
problems, it does not, in general. incorporate the
complete dynamical information of Newton's
second law. It is an integral form of Newton's
second law. Newton's second law is a relation
between acceleration and force at any Instant of
time. Work-energy theorem involves an integral
over an interval of time. In this sense, the temporal
(time) information contained in the statement of
Newton's second law Is ‘integrated over’ and is
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not available explicitly. Another observation is that
Newton's second law for two or three dimensions
is in vector form whereas the work-energy
theorem is in scalar form. In the scalar form,
information with respect to directions contained
in Newton's second law Is not present.

P Example 6.6 A block of mass m = 1 kg,
moving on a horizontal surface with speed
v, = 2 ms™ enters a rough patch ranging
from x=0.10mto x=2.01 m. The retarding
force F, on the block in this range is inversely
proportional to x over this range,

-k
E = for0.1<x<2.0l m

=0forx<0.lmand x>2.01 m

where k = 0.5J. What is the final kinetic
energy and speed v, of the block as it
crosses this patch ?

Answer From Eq. (5.8a)
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1
= Errwf -k 111{_1nc}|§j"jf"l

- 2mi? ~k1n(2.01/0.1)

=2-0.5In(20.1)
=2-1.5 =0.54J

uf=,r'2_Kffm=1ms']

Here, note that In is a symbaol for the natural
logarithm to the base e and not the logarithm to
the base 10 [In X =log X =2.303 log , X]. 4

6.7 THE CONCEPT OF POTENTIAL ENERGY

The word potentlal suggests possibility or
capacity for action. The term potential energy
brings to one's mind ‘stored’ energy. A stretched
bow-string possesses potential energy. When it
Is released, the arrow flies off at a great speed.
The earth's crust is not uniform, but has
discontinuities and dislocations that are called
fault lines. These fault lines in the earth's crust

are like 'compressed springs’. They possess a
large amount of potential energy. An earthquake
results when these fault lines readjust. Thus,
potential energy is the ‘stored energy’ by virtue
of the position or configuration of a body. The
body left to itself releases this stored energy in
the form of kinetic energy. Let us make our notion
of potential energy more concrete.

The gravitational force on a ball of mass mis
mg . gmay be treated as a constant near the earth
surface. By ‘near’ we imply that the height h of
the ball above the earth’s surface is very small
compared to the earth’s radius R (h <<Rj) so that
we can ignore the variation of g near the earth’'s

surface®. In what follows we have taken the
upward direction to be positive. Let us raise the
ball up to a height h. The work done by the external
agency against the gravitational force is mgh. This
work gets stored as potential energy.
Gravitational potential energy of an object, as a
function of the height h, is denoted by Vih) and it
is the negative of work done by the gravitational
force in raising the object to that height.
V(h)=mgh

If his taken as a variable, it is easily seen that
the gravitational force F equals the negative of
the derivative of Vih) with respect to h. Thus,

d
F=——Vhl=-m
dh =

The negative sign indicates that the
gravitational force is downward. When released,
the ball comes down with an inereasing speed.
Just before it hits the ground, its speed is given
by the kinematic relation,

¥ =2gh
This equation can be written as

1
—muvi=mgh

2
which shows that the gravitational potential
energy of the object at height h. when the object
is released, manifests itself as kinetic energy of
the object on reaching the ground.

FPhysically, the notion of potential energy is
applicable only to the class of forces where work
done against the force gets ‘stored up’ as energy.
When external constrainis are removed, it
manifests itself as kinetic energy. Mathematically,
(for simplicity, in one dimension) the potential

*  The variation af g with height is discussed in Chapter & on Gravitation.



